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ABSTRACT Due to importance of measuring the degree of resemblance, the similarity measure is widely
adopted in various areas of the information systems (e.g., medical informatics and information retrieval) and
in several applications like medical diagnostic, image processing, and pattern recognition. However, most of
the existing similarity measures focus mainly on the degree of similarity without consulting expert(s) about
the results. In this paper, an efficient tool for measuring similarity and agreement of objects that embeds
experts’ opinions is proposed to assess similarity among features and agreement of opinions among experts.
To obtain such robust measuring tool, three construction steps were followed. Firstly, adapting soft expert
set as a general structure that consists of four components: objects, attributes, experts, and experts’ opinions.
Secondly, representing the soft expert set, without losing stored information, in such a way as to fit the
proposed similarity-agreement measure and make it simpler and more meaningful than the similar existing
measures. Thirdly, axiomatizing the similarity-agreement measure for the case of two experts to simplify the
model. Further, a diagnostic prediction application and its algorithm is discussed in this context, along with
analysis of the experimental results. Analysis of performance of the proposed similarity-agreement measure
revealed that it has high accuracy, sensitivity, and value of the F-measure and that it has better performance
than existing state-of-the-art tools.

INDEX TERMS Agreementmeasure, diagnostic prediction, information systems, Kappa function, similarity
measure, soft expert set, soft set.

I. INTRODUCTION
The human being counts on her/his own experiences as well
as on those of trustworthy people crossing her/his path in
life. This usually happens at the early age via direct exposure
to the world and language and indirect exposure through
contact with the people whom we trust to be having more
and better knowledge than ourselves. In effect, reliance on
experts’ opinions extends throughout the rest of one’s life.
For example, one consults a physician about diagnosis and
treatment, a lawyer about legal troubles, a doctor about the
way how to do research, and so on.

In general, one may seek an advice in routine problems for
one or more of the following reasons: time constraints, where
the decision must be taken within a deadline; riskiness, where
the decision maker has no clear idea about the consequences
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of her/his decision; solvability, where the decision maker has
the intuition of the existence of some keys for making a
confidant decision; and availability of expert [1].

Appealing to expert’s opinion is encouraged, especially
when it comes to cost-sensitive situations [2]. For instance,
diagnostic errors can lead to patient harm. Nonetheless, they
received inadequate exploration in comparison with other
patient safety concerns [3]. Consequently, and from a the-
oretical point of view, one needs to evaluate the agreement
among experts’ opinions, which prompts further study of the
agreement measure.

The agreement measure is a measuring tool that fits
when it comes to experts’ or observers’ opinions. In other
respects, the similarity measures are a math-based matching
tool that plays an important role in many applications of
information systems such as natural language processing,
image processing, machine learning, and pattern recognition
problems.
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Validity of the similarity measure is usually the bottleneck
for many information system applications [4]. Thus, com-
bination of a similarity measure and agreement measure is
needed for assessment of extent of match between two things
in general setting, where these two things are embedded opin-
ions of experts. A theoretical motivation for such combination
is the nature of the soft expert set [5], which usually comprises
four components: objects, attributes, experts, and experts’
opinions. In the case of the objects, attributes, and experts,
matching is handled by the similarity measure while in the
case of the opinions it is handled by the agreement measure,
which is the common tool in use for matching.

As far as we know, there are no published studies of
measurement of distance, similarity, or agreement in soft
expert sets. In this article, a combined measure is proposed
to determine how close, similar, or so assumable are two
soft expert sets to each other. Applicability of this proposed
measure to prediction of medical diagnosis is also discussed.

In sum, this study aimed at achieving five objectives
(Figure 1). First, to modify similarity measure of soft
sets. Second, to propose an axiomatic definition of agree-
ment measure. Third, to represent soft expert set. Fourth,
to propose an axiomatic definition of similarity–agreement
measure. Fifth, to present an application of the proposed
similarity-agreement measure, along with its algorithm, to a
medical diagnosis prediction problem.

FIGURE 1. Map of objectives.

II. PRELIMINARIES
The purpose of this section is threefold. Firstly, it provides
a briefing on some measurement tools, namely, distance,
similarity, and agreement. Secondly, it introduces soft sets
and highlights their distance and similaritymeasures. Thirdly,
it presents soft expert sets and discusses new representations
of them.

A. MEASUREMENT TOOLS
Measuring distance between two numbers is common in
mathematics. The absolute difference between the numbers
is usually the target, which is conceived as a distance mea-
sure. However, such tool does not work when it comes to
measuring distances among other mathematical objects like
functions, sequences, and matrices [6].

The 20th century was a generalization and axiomatization
era for mathematics. Axiomatizing concepts based on their
nature makes them clear and overcomes any associated dis-
crepancy. Fréchet [7] axiomatized the concept of distance and
called it metric. His definition is applicable to any mathemat-
ical object in a geometrical sense.
Definition 1 ( [6]): Let X be a nonempty set and x, y,

z ∈ X . A mapping d : X×X → R that satisfies the following
axioms

1) d(x, y) ≥ 0,
2) d(x, y) = d(y, x),
3) d(x, y) = 0 if and only if x = y, and
4) d(x, y) ≤ d(x, z)+ d(z, y)

is called a metric.
Example 1: LetR be the set of all real numbers and d be a

metric onR. Then the distance between any two numbers that
belong to R must fulfill the four axioms of the Definition 1.
For example, for x and y that belong to R, the mapping
d(x, y) = |x − y| is a metric.
Normalizing the first axiom in Definition 1 for it to be less

than one or equal to it rather than to be only greater than zero
or equal to it, that is,

0 ≤ d(x, y) ≤ 1,

will be more convenient, especially when the counter part
of distance, i.e., the similarity, is involved. One can say that
distance and similarity are dual concepts,1 that is, they are
inversely related. Accordingly, similarity can be defined as
follows:

s(x, y) = 1− d(x, y).

However, a definition for the concept of similarity by its
own right is still needed. The following axiomatic definition
is an attempt.
Definition 2: Let X be a nonempty set and x, y, z ∈ X .

A mapping s : X×X → R that satisfies the following axioms
1) 0 ≤ s(x, y) ≤ 1,
2) s(x, y) = s(y, x),
3) s(x, y) = 1 if and only if x = y, and
4) s(x, y) ≥ s(x, z)+ s(z, y)

is called a similarity measure.
In other words, the similarity measure should satisfy the

following five conditions [8]–[11]
1) It should be a bounded real-valued function whose

value ranges from zero to one.
2) It should be a symmetric function.
3) If the compared two sets coincide, then the value of the

similarity measure must be one.
4) If the compared two sets are the universal set and the

empty set, then the value of the similarity measure must
be zero.

5) The more similar the compared two sets, the closer to
one is the value of the similarity measure.

1The inverse relation between similarity and difference, however, does not
always hold [9], [12].
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Also, we refer to the following recent results of distance
and similarity measures for better understanding of the fuzzy
counter part of the work [13]–[15].

The agreement measure is a well known and widely used
statistic. Nevertheless, it did not receive much attention,
especially as regards establishment of rigorous mathematical
foundation for it. Consequently, it will be much helpful to
provide or suggest axioms that all agreementmeasures should
obey. This issue is discussed in Section III.

B. SIMILARITY MEASURES OF SOFT SETS
Measuring distance and similarity in classical sets is
well known and it has been developed over time [16].
However, for the soft sets, the similarity measures had their
own development journey. The soft sets were introduced
by [17] as a parameterized family of attributes that assigns
labels to objects having these attributes. In mathematical
sense, the soft set can be written as a map:

F : E → P(U),

where E is a subset of a finite set of attributes1, U is a finite
universe, andP(U) is the set of all subsets ofU , also known as
the power set of U . For convenience, let U = {u1, u2, . . . , ui}
be a finite universe, E = {e1, e2, . . . , ej} be a finite set of
attributes, and S(U) be the set of all soft sets over U .

In their article about the operations of soft sets, [18] sug-
gested thatF shouldmap attribute e ∈ E to a nonempty subset
of U . This is justified by the fact that the soft set stores no
direct information by assigning attribute e to no-object in the
universe of discourse. If there is a case, considering F(e) = ∅
with e not belonging to E , will be helpful [19]. However,
we will not consider such case in this article, and, hence,
the soft set will be characterized by

F : E → P∗(U),

where P∗(U) donates the power set of U except the empty
set ∅.
The similarity measure for the soft sets was introduced

in [20] as follows.2

Definition 3 ( [20]): A similarity measure of soft sets
(F,A) and (G,B) over the same universeU and same attribute
set, that is A = B, is a mapping

s1((F,A), (G,B)) : S(U)× S(U)→ [0, 1]

defined by

s1((F,A), (G,B)) =

∑
j F1(ej) · F2(ej)∑

j(F
2
1 (ej) ∨ F

2
2 (ej))

. (1)

If the attribute sets of (F,A) and (G,B) are not coincident
with some common elements, then the similarity measure s1
is defined by the Formula (1) over the same universe U and
on the set of common attributes, that is A ∩ B.

2Note here, some modifications on notations and technical terms have
been made to fit the context of our discussion.

Remark 1: Note here, Definition 3 is not axiom-based
definition.

The following example was given in [20].
Example 2: Let a universe of discourse U be {x1, x2, x3}

and a set of attributes E be {e1, e2, e3}. Then, the measure of
similarity between (F,A) and (G,B) is s1:

s1((F,A), (G,B)) =

∑3
j F(ej) · G(ej)∑3

j ((F(ej))2 ∨ (G(ej))2)
=

3
6
= 0.5.

However, a counter example of the Formula (1) was
given in [21]. It used the fact that the similarity measure
s1((F,A), (G,B)) must be a real number whose value ranges
from zero to one.
Example 3 ( [21]): Let a universe of discourse U be
{x1, x2, x3} and a set of attribute E be {e1, e2, e3} and choose
a soft set (F∅,E) such that

(F∅,E) = {e1 = {}, e2 = {}, e3 = {}}

Then by using Formula (1), similarity measure s1 between
(F∅,E) and itself s1((F∅,E), (F∅,E)) provides the indeter-
minate value 0

0 instead of one.
From the viewpoint of [18], the work of [20] on similarity

of soft sets will be less imprecise, where the counter example
pointed out by [21] will fade since there are no empty sets in
the image of F . Nevertheless, the uniqueness of representa-
tion in [20] needs to be further rectified as mentioned by [21].
Though, [21] provided another tool to measure the similarity
between soft sets that is based on the axiomatic set theory.
Still, his proposed tool is deficient too when it comes to equal
soft sets [22].
Definition 4 ( [21]): A similarity measure of soft sets

(F,A) and (G,B) over the same universe U is a mapping

s2((F,A), (G,B)) : S(U)× S(U)→ [0, 1]

satisfying the following axioms.
1) 0 ≤ s2((F,A), (G,B)) ≤ 1,
2) If (F,A) = (G,B), then s2((F,A), (G,B)) = 1,
3) s2((F,A), (G,B)) = s2((G,B), (F,A)), and
4) s2 is monotonic.

Further, Kharal (2010) provided a formula for s2 that seems
to be complying with the foregoing four axioms:

s2((F,A), (G,B)) =
|A ∩ B|

max(|A|, |B|)

+

∑
e∈A∩B |F(e) ∩ G(e)|∑

e∈A∩Bmax(|F(e)|, |G(e)|)
. (2)

The following counter example was given by [22].
Example 4 ( [22]): Let a universe of discourse U be
{x1, x2, x3, x4} and a set of attributes E be {e1, e2, e3} and
consider two soft sets (F,A) and (G,B) as

(F,A) = {e1 = {x1, x2}, e2 = {x1, x2, x3}}

and

(G,B) = {e1 = {x1, x2}, e2 = {x1, x2, x3}}.
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Then

s2((F,A), (G,B)) =
|A|
|A|
+

∑
e∈A∩B |F(e)|∑
e∈A∩B |F(e)|

= 2 > 1.

This shows that Formula (2) violates the condition that the
similarity measure should be less than, or equal to, one.

Yang (2013) corrected for the defect in [21] and provided
another measuring tool for the soft sets that could success-
fully address the soft set attributes and objects separately.
Definition 5 ( [22]): A similarity measure of soft sets

(F,A) and (G,B) over the same universe U is a mapping

(λ,µ) : S(U)× S(U)→ [0, 1]× [0, 1]

with (λ,µ)((F,A), (G,B)) = (λ(A,B), µ(F,G)) that
satisfies the following axioms

1) λ(A,A) = µ(F,F) = 1,
2) λ(A,∅) = µ(F,∅) = 0,
3) λ(A,B) = λ(B,A) and µ(F,G) = µ(G,F), and
4) If (F,A) ⊂ (G,B) and (G,B) ⊂ (H ,C), then λ(A,B) ≤

λ(A,B)∧ λ(B,C) and µ(F,H ) ≤ µ(F,G)∧µ(G,H ),
where (F,A), (G,B), and (H ,C) are soft sets.

The following mappings satisfy the aforementioned four
axioms.

λ(A,B) =
|A ∩ B|
|A ∪ B|

(3)

µ(F,G) =

∑
e∈A∩B |F(e) ∩ G(e)|∑
e∈A∩B |F(e) ∪ G(e)|

. (4)

It is worth mentioning that Yang’s [22] definition of
similarity can be re-written in more standard notation as
follows. Let

λ : E × E → [0, 1] (5)

and

µ : U × U → [0, 1] (6)

be two interval-valued functions. Then, the similarity
measure is a mapping

s3((F,A), (G,B)) =
wλ λ(A,B)+ wµ µ(F,G)

wλ + wµ
,

with wλ + wµ = 1 of linear combination of µ and ν with the
desired axioms.

Seeking simplicity, we modify Yang’s [22] similarity defi-
nition by assigning a similarity with single number instead of
pair of numbers.
Definition 6: A mapping s3 : S(U) × S(U) → [0, 1]

defined by

s3((F,A), (G,B)) =
wλ λ(A,B)+ wµ µ(F,G)

wλ + wµ
,

with wλ + wµ = 1, is called a similarity measure of soft sets
if the following axioms hold

1) λ(A,A) = µ(F,F) = 1,
2) λ(A,∅) = µ(F,∅) = 0,
3) λ(A,B) = λ(B,A) and µ(F,G) = µ(G,F), and

4) If (F,A) ⊂ (G,B) and (G,B) ⊂ (H ,C), then λ(A,B) ≤
λ(A,B)∧ λ(B,C) and µ(F,H ) ≤ µ(F,G)∧µ(G,H ),

where (F,A), (G,B), and (H ,C) are soft sets.

C. REPRESENTATION OF SOFT EXPERT SETS
A generalized form of soft set where experts’ opinions about
the information stored in the set are present was given by [5].
However, experts’ opinions and time-dependence of their
opinions should exist whenever an investigation of operations
or applications of soft expert sets is involved. This argument
was emphasized by [25] and some related examples were
pointed out there.

Let J = {j1, j2, . . . , jn} be a set of experts, O = {o1,
o2, . . . , om} be a set of opinions, Z = E × J ×O and A ⊂ Z .
For simplicity, consider O = {agree disagree} with 1 repre-
senting full agreement and 0 representing disagreement.
Definition 7 ( [5]): A pair (F,A) is called a soft expert set

over U , where F is a mapping given by

F : A→ P(U).

One can write soft expert set as the set of all ordered
pair (ζ, η) where ζ belongs to A and η is a subset of P(U),
i.e., (F,A) = {(ζ, η) : ζ ∈ A and η ⊆ P(U)}.
In our effort to propose a similarity-agreement measure

of soft expert sets, we represent the soft expert set, without
losing stored information, as follows:

F : Ã→ O

or

(F, Ã) = {(ξ, o) : ξ ∈ Ã and o ∈ O}

where ξ ∈ Ã ⊆ P∗(U)× E × J .
A hypothetical element in (F,A) will be as ((e, j, 1),
{u1, u2}), that is, objects u1 and u2 have the attribute e with
full agreement of expert j. On the other hand, an element in
(F, Ã) will store the same information and can be written as
(({u1, u2}, e, j), 1).

We conclude this section by emphasizing that soft expert
sets lack measuring, both for distance for similarity.

III. AGREEMENT MEASURE
Following the mathematical philosophy of axiomatizing con-
cepts and tools, we axiomatize the concept of agreement mea-
sure. Doing so provides a rigorous mathematical foundation
for the concept and makes it clearer and more applicable than
before and precludes commitment of errors that may be made
under the condition of lack of rigorous foundation.

The agreement measure is simply conceived as an
opinion–matching tool, both when experts agree to agree and
when they agree to disagree. The description of the experts’
opinions can be represented as confusion matrix. Consider,
for instance, the following table.

LetMn×n be the set of all matrices of order n×n and let A
be one of those matrices, symbolically A ∈Mn×n.
Obviously, the confusion matrix stores experts’ opinions.

So for an axiomatic definition of an agreement measure we
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TABLE 1. Confusion matrix.

define A1 to represent the first expert’s opinion and A2 to
represent the second expert’s opinions with A2 = AT1 , where
AT1 is the transpose matrix of A1.
Definition 8: LetMn×n be the set of all matrices of order

n × n and A1,A2 ∈ Mn×n with A2 = AT1 . A mapping a :
Mn×n ×Mn×n→ R that satisfies the following axioms
1) −1 ≤ a(A1,A2) ≤ 1,
2) a(A1,A2) = 1 if and only ifA1 has zerominor diagonal,
3) a(A1,A2) = 0 if and only if A1 has equaled entities,

and
4) a(A1,A2) = −1 if and only if A1 has zero major

diagonal,
is called a agreement measure.

In other words, the agreement measure should have the
following properties:

1) It is a bounded real-valued function whose value falls
in the range of -1 to 1.

2) It assumes the value of 1 when the two confusion
matrices coincide.

3) It is 0 when there is no agreement among the experts
other than what happens by chance.

4) It becomes negative when the agreement among the
experts is less than what is expected to occur by chance.

Cohen’s (1960) Kappa function (or coefficient) has the form

κ(or , os) =
P0 − Pc
1− Pc

(7)

It satisfies Definition 8, where P0 is the relative identical
to accuracy observed agreement among experts, and Pc is
the probability that experts agreed on some observation by
chance. If the experts are in perfect agreement then κ = 1.
However, if there is no agreement exists among the experts
other than what is expected by chance, then κ = 0.
Lastly, Cohen’s Kappa function can be negative, that is, the
agreement among experts is less then what may occur by
chance [2], [24].

IV. SIMILARITY–AGREEMENT MEASURE
To provide an axiomatic definition of a similarity–agreement
measure, formulation of axiomatic definitions for similarity
and agreement measures is unavoidable or at least is recom-
mended. For the agreement measure, Definition 8 addresses
the concept without any need for modification. However,
in the case of the similarity measure, Definition 6 needs to
be generalized. The reason behind this is that Definition 6
was originally proposed for the soft set, not for the soft
expert set. Therefore, the researchers provide the following
two definitions in order to generalize Definition 6.

Definition 9: Let 0 = (F,A, J ) be a mathematical struc-
ture, where F(e) is the set of objects in the structure 0 that
are assigned to the attribute e ∈ A, and J is the set of experts.
A structure 0 is called a non-opinion part of the soft expert
set and is donated as NO(U).

Before introducing the second definition, let us define the
following functions:

λ : E × E → [0, 1] (8)

µ : U × U → [0, 1] (9)

ν : J × J → [0, 1], (10)

where E , U , and J are the set of parameters, the universal set
of objects, and the set of experts respectively. Additionally,
let (F,A, J1), (G,B, J2), and (H ,C, J3) be three non-opinion
parts of three soft expert sets (F, Ã), (G, B̃), and (H , C̃).
Definition 10: Amapping s : NO(U)×NO(U)→ [0, 1]

defined by

s((F,A, J1), (G,B, J2))

=
wλ λ(A,B)+ wµ µ(F,G)+ wνν(J1, J2)

wλ + wµ + wν
,

with wλ + wµ + wν = 1 is called a similarity measure of
non-opinion parts if the following axioms hold

1) λ(A,A) = µ(F,F) = ν(J , J ) = 1,
2) λ(A,∅) = µ(F,∅) = ν(J ,∅) = 0,
3) λ(A,B) = λ(B,A), µ(F,G) = µ(G,F), and

ν(J1, J2) = ν(J2, J1), and
4) If (F,A, J1) ⊂ (G,B, J2) and (G,B, , J2) ⊂ (H ,C, J3),

then λ(A,B) ≤ λ(A,B) ∧ λ(B,C), µ(F,H ) ≤
µ(F,G) ∧ µ(G,H ), and ν(J1, J3) ≤ ν(J1, J2) ∧
ν(J2, J3).

Prior to definition of a similarity–agreement measure, let
SE(U) express the set of all soft expert sets and (F, Ã), (G, B̃)
be two soft expert sets defined as

(F, Ã) = {(ξp, or ) : ξp ∈ Ã and or ∈ O}

and

(G, B̃) = {(ξp, os) : ξq ∈ Ã and os ∈ O}.

By now, the way is paved for proposing an axiom–based
definition of a similarity–agreement measure.
Definition 11: A similarity-agreement measure of soft

expert sets (F, Ã) and (G, B̃) is a mapping

κs : SE(U)× SE(U)→ [0, 1]× [−1, 1], (11)

defined as

κs((F, Ã), (G, B̃)) = (s(ξp, ξq), κ(or , os))

where the definition s and κ are given in Definition 10 and
Definition 8 respectively.

Definition 11 can be conceived as a general definition of
similarity–agreement measure, since the soft expert set can
be thought of a structure of the desired components.

Let us consider an explicit example of similarity–
agreement measure that satisfies Definition 11. Consider two
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mappings treating the four components of soft expert sets as
follows:

s(ξp, ξq)=
1
3
(
|A ∩ B|
|A ∪ B|

+

∑
e∈A∩B |F(e) ∩ G(e)|∑
e∈A∩B |F(e) ∪ G(e)|

+
|J1 ∩ J2|
|J1 ∪ J2|

)

and

κ(or , os) =
P0 − Pc
1− Pc

.

Then a mapping κs((F, Ã), (G, B̃)) = (s(ξp, ξq), κ(or , os)) is
a similarity–agreement measure.
Remark 2: The mapping s(ξp, ξq) can be weighted as

follows

s(ξp, ξq)=

(
w1
|A∩B|
|A∪B| + w2

∑
e∈A∩B |F(e)∩G(e)|∑
e∈A∩B |F(e)∪G(e)|

+ w3
|J1∩J2|
|J1∪J2|

)
w1 + w2 + w3

,

with w1 + w2 + w3 = 1.
Remark 3: Although the mapping κs can be unified

in a way similar to that in Definition 6, to assign the
similarity–agreement measure a single value that ranges from
0 to 1, Definition 11 has its own advantage in that it provides
separate information about the degree of similarity and the
degree of agreement, which is very much helpful when this
measure is used.

V. APPLICATION: DIAGNOSTIC PREDICTION
A bulky volume of research hightailed the importance of
consulting experts about certain medical diagnosis situations
[26]–[28]. In amajormedical procedure, for instance, seeking
advice from several specialists at different medical centers
is a common practice. Even for internists and physicians,
predicting diagnosis is still challenging [29] because of the
availability of a vast volume of clinical data that exceeds the
ability of the human brain to assimilate and analyze [30].
This issue raises the need for soliciting an expert and, thus,
using agreement measure. However, the clinical data sources
may appear as structured, unstructured, or semi-structured
and incomplete. Hence, ability of the similarity–agreement
measure to predict a medical diagnosis can be limited. Within
this context, this section presents a medical diagnostic pre-
diction system framework for prediction of a diagnosis of
the health condition of a current patient by means of a
similarity–agreement measure (see Figure 2).

For any given pathology, let E = {e1, e2, . . . , em} be
a set of symptoms, P = {p1, p2, . . . , pn} be a set of pre-
vious patients (objects), pcurrent be a current patient, D =
{d1, d2, . . . , dk} be a set of diagnoses, and J be a set of
physicians. Moreover, let (F, Ã) be a soft expert set with a
single patient and (G, B̃) be a soft expert set with all previous
patients. Now, to achieve the goal of predicting a diagnosis of
the current patient, we provide a medical diagnostic predic-
tion algorithm based on similarity-agreement measure.

The algorithm takes as inputs (i) the previous patients and
their symptoms and diagnosis, and (ii) the current patient
and her/his symptoms (Lines 1-4). Therefore, the physi-
cians, as experts, give their opinions on symptoms of each

FIGURE 2. Framework for prediction of a diagnosis.

Algorithm 1 Diagnostic Prediction Based on Similarity-
Agreement
1: Procedure Diagnostic-Prediction (pcurrent ,P,E)
2: I Input: E = {e1, e2, . . . , em}
3: I Input: P = {p1, p2, . . . , pn}
4: I Input: pcurrent
5: J Output: D = {d1, d2, . . . , dk}.
6: For each pi in P do
7: jpi ← Enter Doctor Opinion for Patient Symptoms
8: J ← add jpi to list
9: End for
10: jpcurrent ← Enter Doctor Opinion for Patient
Symptoms
11: For each pi in P do
12: (G, B̃) ← Transfer (P,E, J ) to construct soft
expert set
13: End for
14: (F, Ã) ← Transfer (pcurrent ,E, jpcurrent ) to con-
struct soft expert set
15: For each pi in (G, B̃) do
16: (κs)i← Compute κs((F, Ã), (G, B̃))
17: SA← Add (κs)i to list
18: End for
19: di← max SA
20: return D
21: End procedure

and every previous patient on a two-point scale of agree,
corresponding to a score of 1, or disagree, corresponding
to a score of 0 (Lines 6-9). Likewise, the physicians give
their opinions on symptoms of every current patient on
the same two-point scale (Lines 6-9). Afterwards, the algo-
rithm transforms the membership value of every symptom,
as well as the associated opinion of each physician, to a
soft expert set for the previous patients (Lines 11-13) and
the current patient (Lines 1-4). Then, the algorithm computes
the similarity-agreement score for the pervious and current
patients (Lines 15-18). Consequently, the diagnostic predic-
tion for the current patient will be the diagnosis of the pre-
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vious patient that achieved the highest similarity-agreement
score (Line 19).

VI. EXPERIMENTAL ANALYSIS
Effectiveness of the proposed similarity-agreement measure
was verified in the present study by using seven different
medical datasets drawn from the UCI Machine Learning
Repository database [31], which are the Hepatitis Domain
dataset (D1), Heart Diseases dataset (D2), Pima Indians Dia-
betes Database (D3), Wisconsin Diagnostic Breast Cancer
dataset (D4), Diabetic Retinopathy Debrecen dataset (D5),
BUPA Liver Disorders dataset (D6), and Chronic Kidney
Disease dataset (D7). Since the database is heterogeneous,
instances of missing data are expected. Such data points were
excluded from analysis. So, the researchers excluded missing
data from analysis and selected the relevant items randomly
to get suitable data about 45 patients from each dataset for the
analysis.

The datasets employed in this study were transformed
into soft expert datasets by using Python, which is avail-
able in open source. Then, the similarity-agreement mea-
sures were computed and the results were compared with
the results generated by existing similarity measures; s1, s2
and s3 that were calculated using formulas (1), (2), and (4)
respectively. Performance comparisons were based on three
performance evaluation criteria: sensitivity, accuracy, and
the F-measure [32]. Assessments were made for 500 adult
patients who previously visited internal medicine clinic at
Al-karak Public Hospital in Jordan during February 2020.
The performance evaluation outcomes and a comparison of
level of performance of the proposed measure with those of
the aforementioned three measures are presented in Table 2
and illustrated in Figure 3.

TABLE 2. Performance of the proposed similarity-agreement measure
and comparison with other measures.

FIGURE 3. Comparison of level of performance of the proposed
similarity-agreement measure with those of existing measures.

It can be seen in Table 2 and Figure 3 that the herein
proposed similarity-agreement measure has higher sensitiv-
ity, accuracy, and value of the F-measure than the other
investigated measures.

VII. CONCLUSION AND LIMITATIONS
The similarity–agreement measure is a useful solution for
decision making in cost-sensitive situations. In this paper,
a new general framework for the similarity–agreement mea-
sure is proposed for dealing with uncertainty in cost–
sensitive cases. A relevant algorithm was constructed and,
then, applied for medical diagnosis prediction. The proposed
similarity–agreement tool is competent with state-of-the-art
similarity measures for sensitive cases like s1, s2, and s3.
Accordingly, this study adds to the literature a matching tool
of soft expert sets. Theoretically, it developed a similarity-
agreement tool for measuring the degree of resemblance.
Practically, this tool is very important. It is quite useful
for handling several cost–sensitive and uncertainty problems
such as the problems associated with of the medical diag-
nostic systems, fraud detection systems, and image process-
ing systems. As such, this study has several contributions.
First, it modified the similarity measure of soft sets. Second,
it proposed an axiomatic definition of the agreement measure.
Third, it represented a soft expert set. Fourth, it proposed an
axiomatic definition for the similarity–agreement measure.
Finally, it presented an application of the proposed similarity-
agreement measure, along with its algorithm, to a medical
diagnosis prediction problem.

A limitation of this study is that the proposed
similarity–agreement measure focuses only on the common
features amongst objects. A different similarity measure [12]
has room for distinctive features as well. Another limitation
to mention is that the herein proposed similarity–agreement
measure took into account opinions of two experts only
even though the soft expert set allows for many experts
to contribute. Future works are advised to take these two
limitations into consideration.
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